Blood sulfur-amino acid concentration reflects an impairment of liver transsulfuration pathway in patients with acute abdominal inflammatory processes.

نویسندگان

  • J R Viña
  • A Giménez
  • A Corbacho
  • I R Puertes
  • E Borrás
  • C García
  • T Barber
چکیده

Whole-blood free amino acids were measured in a control group made up of eight healthy women fasted for 12 h and also in eight patients with acute pancreatitis, five patients with acute cholecystitis and seven patients with acute appendicitis. Blood was withdrawn immediately on admission to hospital and again 3 d later following a controlled peripheral parenteral nutrition diet; this is with the exception of the appendicitis group. l-Cystathionine and l-methionine concentrations were significantly higher in pancreatitis and appendicitis patients when compared with controls. In the pancreatitis and cholecystitis patients, l-serine concentration was also significantly higher when compared with controls. The l-homocysteine concentration was significantly higher only in the appendicitis group when compared with the control group. l-Cystine concentration was unchanged in all the patients studied when compared with control subjects. The l-methionine : l-cystine ratio was significantly higher and the l-glutamine : l-cystine ratio was significantly lower in all the patients when compared with controls. The blood S-amino acid pattern reflects an impairment in liver transsulfuration pathway during acute abdominal processes. This work supports the idea that the l-methionine : l-cystine and l-glutamine : l-cystine ratios can be taken as good markers to evaluate the S-amino acid metabolism and suggests the importance of using N-acetylcysteine as a required nutrient in these situations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impaired sulfur-amino acid metabolism and oxidative stress in nonalcoholic fatty liver are alleviated by betaine supplementation in rats.

Nonalcoholic fatty liver is involved in the development of nonalcoholic steatohepatitis and chronic liver injury. Impairment of hepatic transsulfuration reactions is suggested to be critically linked with alcoholic liver injury, but its role in nonalcoholic fatty liver remains unknown. We examined the early changes in sulfur-amino acid metabolism and their implication in nonalcoholic fatty live...

متن کامل

An Allosteric Mechanism for Switching between Parallel Tracks in Mammalian Sulfur Metabolism

Methionine (Met) is an essential amino acid that is needed for the synthesis of S-adenosylmethionine (AdoMet), the major biological methylating agent. Methionine used for AdoMet synthesis can be replenished via remethylation of homocysteine. Alternatively, homocysteine can be converted to cysteine via the transsulfuration pathway. Aberrations in methionine metabolism are associated with a numbe...

متن کامل

The Sulfur Metabolite Lanthionine: Evidence for a Role as a Novel Uremic Toxin

Lanthionine is a nonproteinogenic amino acid, composed of two alanine residues that are crosslinked on their β-carbon atoms by a thioether linkage. It is biosynthesized from the condensation of two cysteine molecules, while the related compound homolanthionine is formed from the condensation of two homocysteine molecules. The reactions can be carried out by either cystathionine-β-synthase (CBS)...

متن کامل

Methionine kinetics are altered in the elderly both in the basal state and after vaccination.

BACKGROUND Inflammation is known to affect sulfur amino acid metabolism. Aging is associated with an increased prevalence of inflammatory conditions, but the metabolism of methionine has been poorly explored in the elderly. OBJECTIVES The aims of this study were to compare methionine kinetics between elderly and young subjects and to explore the effect of aging on the response to a mild infla...

متن کامل

Novel Cysteine-Centered Sulfur Metabolic Pathway in the Thermotolerant Methylotrophic Yeast Hansenula polymorpha

In yeast and filamentous fungi, sulfide can be condensed either with O-acetylhomoserine to generate homocysteine, the precursor of methionine, or with O-acetylserine to directly generate cysteine. The resulting homocysteine and cysteine can be interconverted through transsulfuration pathway. Here, we systematically analyzed the sulfur metabolic pathway of the thermotolerant methylotrophic yeast...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The British journal of nutrition

دوره 85 2  شماره 

صفحات  -

تاریخ انتشار 2001